\dagger Department of Biosciences and Nutrition, Unit of Organic Chemistry, SE-141 57, Huddinge, Sweden
E-mail: Jan.Bergman@biosci.ki.se
\ddagger The School of Chemistry, The University of Manchester, Manchester M13 9PL, UK
Received February 19, 2008

The reaction of cyclohexanone azine with a reagent produced by brief heating of cyanoacetic acid with acetic anhydride produced a highly substituted dihydropyrazolone.
J. Heterocyclic Chem., 45, 1513 (2008).

INTRODUCTION

The reagent which can quickly be prepared from cyanoacetic acid and acetic anhydride ($10 \mathrm{~min}, 95^{\circ} \mathrm{C}$) has been demonstrated to be a powerful means for N - and C-cyanoacetylation [1,2]. Thus, molecules like 1 (from indole) and 2 (from 2-cyanoaniline) can readily be prepared (Figure 1).

1

2

Figure 1

Currently there is a strong interest in the synthesis and biological properties of pyrazoles [3-6], and in this context we contemplated hydrazones and azines as readily available precursors to such systems. As a first probe, the azine 3 of cyclohexanone was selected because this molecule is known to be convertible into the hexahydroindazole derivative 4 (a 4,5-dihydropyrazole) by reaction with oxalic acid, as was first reported by Stollé and Hanusch in 1930 [7]. The structure of 4 was later confirmed by Kost and Grandberg [8] and it was also independently prepared from 5 [9] (Figure 2).

RESULTS AND DISCUSSION

Exposure of the azine $\mathbf{3}$ to the standard reagent (cyanoacetic acid dissolved for 5 min in acetic anhydride at $95{ }^{\circ} \mathrm{C}$) at $40{ }^{\circ} \mathrm{C}$ gave, after work-up, a product, $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2}$, in $40-80 \%$ yield (depending on the

3

4

5

Figure 2
conditions), where clearly two units of the reagent had been incorporated. Bearing in mind the conversion of $\mathbf{3}$ into 4 on acid treatment, we initially considered structure 6 for this product. However since the ${ }^{1} \mathrm{H}$ NMR spectrum revealed the presence of a typical alkenic CH -signal, this assignment was reconsidered and structure 7 was considered as a possible structure. Further NMR analysis contradicted even this hypothesis and the molecule was therefore subjected to an X-ray analysis which gave conclusive evidence for the 4,5-dihydro-5H-pyrazol-3-one structure 8 (Figure 3). Details of the structural analysis are given in the Experimental Section and a Chem3D representation of the molecule is shown in Figure 4. There are several intriguing features of the structure which merit comment.
There are two amide units in the structure $\mathbf{8}$ but they are quite different. The nitrogen of the five-membered ring amide is, as one would anticipate, essentially planar, with the sum of the angles around the nitrogen being 357.8°. However, the adjacent cyanoacetamide nitrogen is far

6

7

8

Figure 4 Chem3D representation of compound $\mathbf{8}$ using the atomic co-ordinates established by X-ray analysis.
from planar, with the sum of its angles being 344.7° substantially pyramidalised. There are two copies of the molecule in the asymmetric unit, which from the choice made are an enantiomorphic pair. The five-membered dihydropyrazolone ring takes an envelope conformation, with the spiro carbon being 0.634 and $0.621 \AA$ out of the average plane of the other four atoms in the two forms.

Scheme 1 shows a plausible mechanism for the formation of pyrazolone derivative 8 . Imine N-acylation of azine $\mathbf{3}$ by the reagent 9 which is prepared from cyanoacetic acid and acetic anhydride, produces the iminium salt $\mathbf{1 0}$, which by deprotonation, would then give an intermediate enamide of structure 11. A second N acylation of the remaining imine $\mathbf{1 1}$ followed by
intramolecular cyclisation due to the acidity of the cyanoacetamide hydrogen (arrows on 12) would lead to 8 . In this context, the reported formation of 4-cyano-3pyrazolidone from the corresponding hydrazone [10] and also the purported formation of 3-aryl-4,5,6,7-tetrahydroindazoles upon treatment of N -cyclohexylidenecyanoacetyl hydrazide with benzaldehyde derivatives [11] is of considerable interest.

Scheme 1

The ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{8}$ indicated that it is unstable in solution, because the spectrum of $\mathbf{8}$ in DMSO solution changed with time. Thus the 18 original signals were slowly replaced by a new set of 18 signals. Thus, for instance, the signal for the spirocyclic carbon atom in $\mathbf{8}$ at 73.1 ppm was slowly replaced by a new signal at 60.2 ppm.

The same changes were observed in an ethanol solution, but over a longer period of time. However, with the addition of water to the ethanol solution these changes occurred faster. The conversion could be completed by heating an aqueous alcoholic solution of $\mathbf{8}$ to $75^{\circ} \mathrm{C}$ when cooling resulted in precipitation of a product in 80% yield. The changed product was shown to have the elemental composition $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}$ and was assigned structure 13 (Figure 5). Thus, the NMR spectrum of $\mathbf{1 3}$ showed that the cyanoacetyl unit was absent, but rather surprisingly, the enehydrazide functionality was intact - it had not been hydrolysed.

Heating compound $\mathbf{8}$ at reflux in aqueous ethanol for a longer period did bring about further hydrolysis and the resulting bicyclic hydrazide $\mathbf{1 4}$ could be isolated in 70% yield. The structure was initially established by a consideration of spectroscopic data - for example, the
spirocyclic carbon atom resonated at 63.3 ppm and the corresponding carbon in $\mathbf{1 5}$ [12] resonated at 62.3 ppm (Figure 5). The structure of $\mathbf{1 4}$ was confirmed by an X-ray analysis, the details of which are given in the Experimental Section and a Chem3D representation of the molecule is shown in Figure 6. Here again, there is interest in the three different nitrogen situations: in addition to the nitrile nitrogen, there is a five-membered amide nitrogen and a hydrazine nitrogen in a fivemembered ring. The amide nitrogen is perfectly planar, with the sum of angles being 360.1°. The hydrazine nitrogen has three angles $\left(107.4^{\circ}, 106.9^{\circ}\right.$ and 103.8°) which are very close to those around ammonia $\left(107^{\circ}\right)$, the smallest being the internal ring angle.

13

14

15

Figure 5

Figure 6 Chem3D representation of compound 14 using the atomic coordinates established by X-ray analysis.

EXPERIMENTAL

NMR data were recorded on a Bruker DPX at 300.1 MHz for ${ }^{1} \mathrm{H}$ and 75.5 MHz for ${ }^{13} \mathrm{C}$, respectively. IR spectra were acquired on a Perkin-Elmer FT-IR 1600 spectrophotometer. Elemental analyses were performed by LSM Lab, Uppsala, Sweden. Melting points were determined on a Leica Kofler hot stage or a

Büchi B-545 capillary melting point apparatus and are uncorrected. Data for the two X-ray analyses have been deposited at the Cambridge Crystallographic Data Centre under the CCDC numbers 669439 (compound 8) and 669440 (compound 14) and can be obtained free of charge via www.ccdc.cam.ac.uk/data request/cif.

Cyclohexanone azine (3). This compound was prepared according to ref. [13], as yellow crystals, $\mathrm{mp} 33-34{ }^{\circ} \mathrm{C}$ (lit [13] $35^{\circ} \mathrm{C}$); IR (neat) $2935,2919,2850,1630,1436,1313,1130$, $988 \mathrm{~cm}^{-1}$.

4-Cyano-1-cyanoacetyl-2-(cyclohexen-1-yl)-1,2-diazaspiro-[4.5]decan-3-one (8). Cyanoacetic acid ($6.2 \mathrm{~g}, 72.9 \mathrm{mmol}$) and $\mathrm{Ac}_{2} \mathrm{O}(20 \mathrm{~mL})$ were heated to $95^{\circ} \mathrm{C}$ for 5 min . The solution was cooled to $40^{\circ} \mathrm{C}$ and cyclohexanone azine [13] ($7 \mathrm{~g}, 36.5 \mathrm{mmol}$) was added. The reaction mixture was heated to $70{ }^{\circ} \mathrm{C}$ for 15 min . After leaving at rt overnight the product had formed as a precipitate which was collected, washed with a small volume of acetic acid, and dried at room temperature in the air to yield $\mathbf{8}$ ($5.2 \mathrm{~g}, 44 \%$) as a white solid, $\mathrm{mp} 152-153{ }^{\circ} \mathrm{C}$; IR (neat) 2933 , 2864, 2257, 2250, 1714, 1664, 1324, $1207 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 5.77-5.71(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 4.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 3.98(\mathrm{~d}$, $\left.J_{\mathrm{AB}}=19.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{A}}\right), 3.80\left(\mathrm{~d}, J_{\mathrm{AB}}=19.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{B}}\right), 2.44-$ $1.21\left(\mathrm{~m}, 18 \mathrm{H}, 9 \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) $\delta 168.1$ (s), 164.2 (s), 133.9 (s), 119.4 (d), 115.4 (s), 114.1 (s), 73.1 (s), 46.8 (d), $31.5(\mathrm{t}), 31.4(\mathrm{t}), 28.2(\mathrm{t}), 24.3(\mathrm{t}), 24.2(\mathrm{t}), 23.6(\mathrm{t}), 22.5(\mathrm{t}), 21.8$ (t), 21.7 (t), $21.0(\mathrm{t})$. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2}: \mathrm{C}, 66.24 ; \mathrm{H}, 6.79 ; \mathrm{N}$, 17.16%. Found: C, $66.20 ;$ H, 6.79 ; N, 17.25%.

Crystal structure determination. Data were collected on a Bruker Smart Apex CCD diffractometer. Wavelength: 0.71073 \AA A; Temperature: $100(2) \mathrm{K}$; Reflections collected/unique: 26285/6927 [R(int) $=0.0759]$; Completeness to theta $=26.37$: 99.7%; Space group: $\mathrm{C} 2 / \mathrm{c}$; $\mathrm{a}=27.216(2) \AA$; $\mathrm{b}=9.5770(9) \AA \beta$ $=103.073$ (2) deg.; c = 26.798(2) $\AA ; \mathrm{V}=6803.8(11) \AA^{3} ; \mathrm{Z}=16$; R indices $[\mathrm{I}>2 \sigma(\mathrm{I})]: \mathrm{R} 1=0.0548$, wR2 $=0.1020 ; \mathrm{R}$ indices (all data): $\mathrm{R} 1=0.1020, \mathrm{wR} 2=0.1151$.

The structure was solved with SIR2004 [14] and refined with SHELXL97 [15]. There were two molecules in the asymmetric unit.

2-Cyclohex-1-enyl-3-oxo-1,2-diaza-spiro[4.5]decane-4carbonitrile (13). Compound $8(2.0 \mathrm{~g})$, ethanol (35 mL) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ were heated to $75^{\circ} \mathrm{C}$ for 5 min . After 6 h at rt the product had formed as white crystals which were collected, washed with chilled ethanol and dried at room temperature to yield 13 ($1.3 \mathrm{~g}, 80 \%$), mp $113-115{ }^{\circ} \mathrm{C}$; IR (neat) 3212,2921 , 2858, 2249, 2235, 1686, 1673, $1378 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 5.97(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 5.82-5.77(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 4.15(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$, 2.45-1.14 (m, 18H, $9 \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$) $\delta 163.9$ (s), 134.6 (s$), 115.6$ (s$), 114.8$ (d), 60.2 (s), 47.5 (d), 33.2 (t$), 30.2$ (t), $25.3(\mathrm{t}), 24.8(\mathrm{t}), 23.5(\mathrm{t}), 22.0(\mathrm{t}), 21.4(\mathrm{t}), 21.3(\mathrm{t}), 21.3(\mathrm{t})$. Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 69.47$; H, 8.16; N, 16.20%. Found: C, 69.15; H, 8.16; N, 16.21%.

4-Cyano-1,2-diazaspiro[4.5]decan-3-one (14). Compound 8 $(2.0 \mathrm{~g})$, ethanol (35 mL) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ were heated to reflux for 2.5 h . After leaving at rt overnight the product had formed as a precipitate which was collected, washed with ethanol, and dried at room temperature in the air to yield $\mathbf{1 4}(1.4 \mathrm{~g}, 70 \%)$ as a yellow solid, mp $92{ }^{\circ} \mathrm{C}$; IR (neat) $3225,3078,2938,2857,2244,1691$, $1453,910 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 9.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 5.43(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NH}$), 3.88 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$), 1.83-1.11 (m, 10H, $5 \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) $\delta 168.6(\mathrm{~s}), 115.9(\mathrm{~s}), 63.3$ (s$), 45.3$ (d), 33.6 (t), 30.5 (t), 24.8 (t), 21.3 (t$), 21.3$ (t). Calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 60.32 ; \mathrm{H}$, 7.31 ; N, 23.45\%. Found: C, $60.38 ; \mathrm{H}, 7.31 ; \mathrm{N}, 23.38 \%$.

Crystal structure determination. Data were collected on a Bruker Smart Apex CCD diffractometer. Wavelength: 0.71073 \AA; Temperature: $100(2) \mathrm{K}$; Reflections collected/unique: 14039/2132 $[\mathrm{R}($ int $)=0.0491]$; Completeness to theta $=25.00$:
 $=22 . .0345(18) \AA ; \mathrm{V}=1766.8(2) \AA \AA^{3} ; \mathrm{Z}=8 ; \mathrm{R}$ indices $[\mathrm{I}>2 \sigma(\mathrm{I})$: $\mathrm{R} 1=0.0457, \mathrm{wR} 2=0.1058 ; \mathrm{R}$ indices (all data): $\mathrm{R} 1=0.0555$, $\mathrm{wR} 2=0.1108$.

The structure was solved with SIR2004 [14] and refined with SHELXL97 [15].

REFERENCES

[1] Slaett, J.; Romero, I.; Bergman, J. Synthesis 2004, 27602765.
[2] Slaett, J.; Janosik, T.; Wahlstroem, N.; Bergman, J. J. Heterocycl. Chem. 2005, 42, 141-145.
[3] Elgemeie, G. H.; Zaghary, W. A.; Amin, K. M.; Nasr, T. M. Nucleos. Nucleot. Nucl. 2005, 24, 1227-1247.
[4] Chornous, V. O.; Bratenko, M. K.; Vovk, M. V. Zhur. Org. Farm. Khim. 2003, 1, 35-50.
[5] Orth, R. E. J. Pharm. Sci. 1968, 57, 537-556.
[6] See yearly reviews as chapter 5.4 in Prog. Heterocycl. Chem.
[7] Stollè, R.; Hanusch, F. Chem. Ber. 1930, 63, 2211-2215.
[8] Kost, A. N.; Grandberg, I. I. Zh. Obshch. Khim. 1955, 25, 2064-2070.
[9] Terent'ev, A. P.; Kost, A. N.; Saltykova, Y. V.; Ershov, V. V. Zh. Obshch. Khim. 1956, 26, 2925-2928.
[10] Ovcharenko, V. V.; Terent'ev, P. B.; Avetisyan, A. A.; Kagramanyan, A. A. Khim. Geterotsikl. Soedin. 1995, 1525-1530.
[11] Hussein, A. H. M. Z Naturforsch., B. 1998, 53, 488-494.
[12] Johnson, P. Y.; Hatch, C. E., III. J. Org. Chem. 1975, 40, 3502-3510.
[13] Perkin, W. H., Jr.; Plant, S. G. P. J. Chem. Soc. 1924, 125, 1503-1513.
[14] Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo, C.; Polidori, G.; Spagna, R. J. Appl. Cryst. 2005, 38, 381-388.
[15] Sheldrick, G. M., (1997) SHELXS1997. Program for crystal structure solution. University of Göttingen, Germany.

